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Fig. 2 Comparison between inverse simulation results generated by
Genisa/Hibrom I and II (hurdle hop: V; =40 kn, =5 m, s = 150 m);
time step: two turns of main rotor. ——, Genisa/Hibrom II, and - - -,
Genisa/Hibrom L

behavior is that a minimum interval corresponding to two turns of
the main rotor is required to allow the transient engine dynamics to
settle down toward a new steady state following each application
of the controls. The time constant associated with a first-order ap-
proximation to the engine governor model is typically 0.397 s. This
is more than double the time interval of 0.1755 s that corresponds
to one full turn of the main rotor. This explanation can be verified
by reducing the engine model time constants 7,;, 7,2, and 7,3 to 1%
of their nominal values. The results improve, and a control applica-
tion interval of once per revolution produces smooth control time
histories and engine states.

V. Conclusions

An engine governor model has been successfully incorporated
into the individual blade rotor model Hibrom for helicopter inverse
simulation. Hence, the rotorspeedis now a degree of freedom within
the modeled system.

A series of modifications have been made to the solution algo-
rithm Genisa to accommodate the variation in rotorspeed. In partic-
ular, the control application interval is now recalculated iteratively
at each time step. This is necessary to match the rotor periodicity
that is inherent in the individual blade rotor model. In addition, the
control application interval must be sufficiently long to allow the
transient dynamics to settle; otherwise algorithm failure can occur.

The addition of the rotorspeed degree of freedom does not signif-
icantly affect the predicted control time histories for the maneuver
consideredin this study. However, as the boundariesof the flight en-
velope are approached, it may be expected that the enhanced rotor
model will be closer to predicting actual flight behavior. Further-
more, with the introduction of the rotorspeed degree of freedom,
it will now be possible to improve simulation fidelity by including
other blade degrees of freedom.
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Structural Dynamics and Quasistatic
Aeroelastic Equations of Motion

John R. Dykman* and William P. Rodden’
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Introduction

HE quasistaticaeroelastic equations of motion of a flight vehi-

cle include all of the static effects of flexibility and assume that
there are no structural dynamic effects, i.e., the vehicle is regarded
a point vehicle with six degrees of freedom. Thus, all points of the
structure are in phase with the motions of a reference point, e.g.,
the center of gravity or the quarter point of the mean aerodynamic
reference chord. The dynamic effects of structural modes cannotbe
included simply by adding the modal equations of motion to couple
with the quasistatic equations, as has been incorrectly suggested by
Rodden and Love.' The correct formulation begins with the mean
axis equations of motion to which the modal dynamic equations
are added with all appropriate aeroelastic coupling.> Many modes
must be included to account accurately for static aeroelastic behav-
ior, but because not all of these are necessary to account for the
dynamic response, the high-frequency modes can be eliminated by
residualization?

Residualization of the Aeroelastic
Equations of Motion

The fundamentalequationof motion of a linear aeroelasticsystem
in generalized (modal) coordinates is given in Eq. (1). The system
free vibration mode shapes are the generalized coordinates ¢ and
the control surface inputs are generalized coordinates g°¢.

Mg+ Cq + Kqg =3Q0(M) + F~'[gQ(M, k)q] — M“§*
+77GQ (M. kgl + W 1

The generalizedstructuralmass, damping, and stiffness matrices are
M, C, and K, respectively; W is a vector of weight and static unbal-
ance components adjusted for the trim pitch angle of the mean axes.
The coupled control surface generalized structural mass matrix is
M€, and the control surfacesstiffnessand damping are neglected. The
generalizedaerodynamiccoefficients Qy(M) are interceptvalues for
incidence, twist, and camber and are functions of the Mach number
M . The generalizedunsteady aerodynamiccoefficients Q(M, k) and
the coupled control surface generalized unsteady aerodynamic co-
efficients Q°(M, k) in the frequency domain are functions of Mach
number and reduced frequency k, where k =®c¢/2V in which o is
the angular frequency, ¢ is the reference chord, and V' is the flight
velocity. The aerodynamic force is scaled by dynamic pressure g7,
where § =pV?/2 in which p is the atmosphericdensity. F~![ ] rep-
resents the inverse Fourier transformof the quantity in brackets. The
generalizedunsteady aerodynamic coefficients are complex and can
be separatedinto their real and imaginary parts to obtain an approx-
imation in the time domain as

F'aQ(M, kgl =F"{g["Q(M, k)lq
+ @2V Q(M, k) kliog) = GAq + G(¢/2V)Bg )

The coefficients are obtained from an unsteady aerodynamic theory
such as the doublet-latticemethod,*> where A is the real part of the
generalizedaerodynamicforce (GAF) matrix and B is the imaginary
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part of the GAF matrix divided by & for a selected Mach number
and reduced frequency. Likewise, for the control surfaces

F GO M, kgl = F H{ql* @ (M, k)lg°
+q@2V)['Q (M, k) kliwg®} ~ GA“q° + G(¢/2V)B ¢
3

This approximationmakes the GAFs invariantwith frequency. For a
quasistaticaerodynamicassumptionthese coefficients are evaluated
atalow value of k such as 0.001. With these assumptions Egs. (1-3)
can be combinedto give Eq. (4), where the aerodynamiccoefficients
are shown as constants.

Mg+ Cqg+ Kqg =3Qy + gAq + G(¢/2V)Bg — M°g°
+gA°q° + q(c/2V)B¢- + W “4)

If the generalized coordinates are partitioned into those for rigid
body modes (R), the flexible dynamic modes (D), and the flexible
static modes (S), then Eq. (4) can be rewritten as Eq. (5).

Mg: O : O Gr) 0: 0: 0 dr)
0 ' Mp: O gog +|0:Cp: 0| 1d4p

Br : Brp : Bgs| |4r

AR By w
e\ i

+qlA) {qc}+Q(2—V) Byl + 40 5)
A B 0

This equationdescribesthe entire aeroelasticsystem and can include
alargenumber of the free vibrationmodes of the system. The flexible
modes are partitioned into groups called “dynamic” and “static” for
convenience in the following development. The “dynamic” modes
are those modes whose dynamic effect is kept in subsequent anal-
yses. The “static” modes are those higher frequency modes whose
dynamic effectis neglectedbut whose static effectis kept in the sub-
sequent analyses. The dimensional characteristicsof the rigid body
partitionsA g and B can be illustrated in the longitudinal case with
plunging and pitching degrees of freedom (DOF)
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where S is the reference area and customary notation is used for the
stability derivatives.

Toreducethe size of the problem, the staticmodes are residualized
by retaining their deflections but eliminating their velocities and
accelerations? Thisis accomplishedby settinggs =¢s =0inEq. (5)
and solving for the flexible static modal deflections g5, which are

. qr
gs =q(Ks — qAs) ' [Asg * Agp] { - }
qp

qr
+q(c/2V)(Ks — GAs)"'[Bsg * Bspl {}
dp
- (Ks — qAS)_1M§q"C + G(Ks — qAS)_lquC

+q(e/2V)(Ks — qAs)”'Byq* 6)
Eliminating g5 from Eq. (5) gives

R o e

(E ) BR BRD {qR} M;
+gl—= |- ceet — | g€}
2V Bor © Bp |Up _MC_

A aNL w
AR R vl | A U T )
A5, By, 0

Generic forms for the various barred partitions in the preceding
equation can be written as follows. For the singly subscripted parti-
tions of A or B,

P, =P, + GA;s(Ks — GAs)™'Py ®)
and for the doubly subscripted partitions
Pmn =Pmn + quS(KS - qAS)_lPSn (9)

where P denotes A or B, [ and m denote R or D, and n denotes D
or R. For the control system partitions the generic form is singly
subscripted as

P; =P + GA;5(Ks — qAs)”'P§ (10)

where P¢ denotes M, A¢, or B and [ denotes R or D.

The quasistatic aeroelastic (QSAE) solution is obtained by keep-
ing just the deflections of the dynamic modes and eliminating
their velocities and accelerations. This is accomplished by setting
Gp =¢p =0 in Eq. (7) and is equivalent to residualizing all of the
flexible modes, both static and dynamic. In this case

qp =3(Kp — GAp)~'Aprqr + §(¢/2V)(Kp — GAp)~'Borgr
— (Kp —qAp)"'Mpg° + G(Kp — qAp)'A}q°
+q(@/2V)(Kp — GAp) ' Bj4" (11)
and Eq. (7) reduces to
Mriin =GQo + GArqr +4(/2V)Brdr — M

+qASq° + q(cI2V)BG" + W (12)
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with the generic expressionsfor the doubly barred partitions written
as

I:)R :PR + qARD(KD - qAD)_lPDR (13)

where Py denotes Ap or Bi and Ppr denotes Apg or Bpr. The
control system terms are

P =P + GArp(Kp — GAp) ' P, (14)

where I_’; denotes M;, A;, or B; and I_’g denotes M;, Az, or l_fj).

The partitions Az and By in Eq. (5) are the aerodynamic coeffi-
cients for a rigid vehicle. The partitions Ay and By in Eq. (7) are
the mean axis DOF aerodynamic coefficients for a vehicle with the
static modes residualized but not the dynamic modes. The matri-
ces Az and By in Eq. (12) are the mean axis DOF aerodynamic
coefficients for a QSAE vehicle with no dynamic structural modes
included, i.e., all modes are regarded as static. The important point
to note is that Ay A ~Ag and Br =By ~By.

The equation of motion described by Eq. (5) representsa flexible
vehicle with all of its modes consideredas dynamic. The equationof
motion described by Eq. (7) represents a flexible vehicle with some
but not all of its structural dynamic effects included. The equation
of motion described by Eq. (12) represents a flexible vehicle with
none of its structural dynamic effects included. This correspondsto
a QSAE vehicle where all of the static flexible effects are included,
but none of the dynamic flexible effects are included. This is the
formulation that leads to unrestrained aeroelastic derivatives such
as those obtained from FLEXSTAB® or MSC/NASTRAN, SOL 144
(Ref. 7). Solving for the dynamic stability (the eigenvalue problem)
of each of Egs. (5), (7), and (12) results in different mean body DOF
roots, e.g., the short period root in the longitudinal case.

Let us compare Egs. (7) and (12) and define generic increments
in Egs. (13) and (14) as

Py =Py — APy (15)
where Pp denotesAR,BR,M;,Afe orl_fje and

AI:)R = _qARD(KD - qAD)_lPDR (16)
where Ppg denotes Apg or Bpg, or

APy = —gAro(Kp — GAp) "' Py a7

inwhich P, =M¢ A¢, or B¢,. We may rewrite Eq. (7) using Eq. (15)
to give

SR AR

Bpr B, |lp | M
Ap+ Ayl o\ Byt ABy| (W
+4g REREEEEEE {q}+q 2_V EEREERERE {q }+
A )

Equation (18) is the formulation of Rodden and Love! if the in-
crements AAg, ABp, AM;, Afi;, and AB; are set to zero. The
mistake is seen in their omission. Both Eqs. (7) and (18) are correct;
which is preferable depends on the analyst.
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Example of a Forward-Swept Wing Airplane

A forward-swept wing airplane has been considered as an exam-
ple in Refs. 1 and 7 and is reconsidered here. In Ref. 1 strip theory
aerodynamics were used, and in Ref. 7 the doublet-lattice method
was used. The planform with its structural,inertial, and aerodynamic
idealizations is shown in Fig. 1. The structural model is shown on
the right side with the grid points (GP) numbered; the doublet-lattice
aerodynamic model is shown on the left side with 8 boxes on the
left canard and 32 boxes on the left wing, and body interference is
neglected. The airplane has a gross weight of 16,000 Ib. Its wing
spanis 40 ft, its canard spanis 10 ft, and both surfaces have chords of
10 ft. The structural damping is assumed at two percent. The canard
mass and aerodynamic damping are neglected, and the intercept
coefficients are assumed to be zero. The remaining characteristics
are discussed in the references. This simple model has only six vi-
bration modes for out-of-plane motion; their frequencies are 9.89,
18.40, 43.22, 56.77, 71.03, and 138.35 Hz. The example maneu-
ver assumes a dynamic pressure of 1200 psf, which corresponds
to a speed of 1005 ft/s and a Mach number of 0.90 at sea level.
The airplane is in trimmed level flight for 0.10 s with an angle of
attack of 0.178 deg and canard position of 1.007 deg. Then a pull-
up is initiated, and the control input rotates the canard at 50 deg/s
to 4.007 deg at 0.16 s. At 0.66 s a push-over is begun, and the ca-
nard position reaches -1.993 deg at 0.78 s. At 1.28 s the control is
reversed and returns to the trim position at 1.34 s.

Tables 1, 2, and 3 present calculated mean axis load factor at
GP 90, mean axis pitch acceleration, and first flexible modal accel-
eration, respectively, at selected values of time. The second column
presents the accelerations of the QSAE vehicle, i.e., the solution
of Eq. (12) where all six modes have been residualized. The third
column shows the correct solution based on Ref. 2 with the six dy-
namic modes retained [equivalent to Eq. (5) with no static modes],
the fourth column shows the correct solution with one dynamic
mode and five residualized modes, and the fifth column shows the
correct solution with one dynamic mode retained and the remaining
modes truncated. The differences between the QSAE solution and
the dynamic modal solutions result from the abrupt changes in the
canard motion; more gradual changes would not excite the structure
as much. Finally, the sixth column shows the incorrect solution of
Ref. 1 with all six dynamic modes retained [equivalent to Eq. (18)
with the delta increments set to zero].

The time histories of the QSAE vehicle have been plotted in
Fig. 4 of Ref. 1. The various solutions in Tables 1 and 2 are slightly
different, but they are not shown here. The new result for the first
flexible mode, not obtained in Ref. 1 and shown in Table 3, is also
plotted in Fig. 2 for the case of all six flexible modes retained in the
analysis.

In this example, it is seen that only one dynamic mode is required
to achieve convergence because of the wide separation between the
first and second modal frequencies, and that modal residualization
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Fig. 1 Idealization of forward-swept wing airplane.



o
)

J. AIRCRAFT, VOL. 37,NO. 3: ENGINEERING NOTES 541

Table1 Mean axis load factor at GP 90 (g)

Correct solution Correct solution Incorrect

Correct solution? Eq. (7)—1 mode Eq.(7)—1 mode  solution!

t,s QSAE 6 modes 5 modes residualized  no residual modes 6 modes
0.10 1.000 1.000 1.000 1.000 1.000
0.16 2.089 1.946 1.961 1.897 2.240
0.34 4413 4.462 4.465 4515 4.186
0.66 3.764 3.799 3.798 3.778 3.749
0.78 0.768 0.870 0.848 1.016 0.299
0.94 -2.931 —2.952 —2.964 —3.055 —2.437
1.28 —1.836 —1.891 —1.890 —1.848 —-1.773
1.34 —-0.841 —0.989 -0.974 —1.067 —0.462
1.40 0.116 0.180 0.186 0.051 0.481
1.60 1.335 1.269 1.270 1.381 0.991
1.80 0.874 0.918 0.916 0.853 1.050
2.00 1.048 1.023 1.024 1.056 0.978

Table2 Mean axis pitch acceleration (deg/s?)

Correct solution Correct solution Incorrect

Correct solution? Eq. (7)—1 mode Eq. (7)—1 mode solution'

t,s QSAE 6 modes 5 modes residualized  no residual modes 6 modes
0.10 0.0 0.0 0.0 0.0 0.0
0.16 115.3 116.9 116.6 122.1 96.3
0.34 —45.5 —48.3 —48.2 -50.0 -33.5
0.66 -0.3 -33 -3.0 0.1 —4.2
0.78 —162.8 —159.0 —158.9 —-169.9 —-126.9
0.94 81.8 82.6 82.8 88.7 50.7
1.28 6.0 10.1 9.9 5.8 54
1.34 126.0 127.3 126.9 133.2 96.2
1.40 48.9 41.6 41.9 49.4 294
1.60 —18.8 —-11.9 —-12.4 -20.2 3.9
1.80 7.2 3.1 3.3 8.0 —4.1
2.00 -2.7 -0.7 -0.8 -3.1 1.5

Table 3 First flexible modal acceleration (g)

Correct solution Correct solution Incorrect

Correct solution? Eq. (7)—1 mode Eq. (7)—1 mode solution'

t,s QSAE 6 modes 5 modes residualized no residual modes 6 modes
0.10 — 0.000 0.000 0.000 0.000
0.16 — 0.255 0.253 0.247 0.157
0.34 — —0.301 -0.313 -0.277 —-0.237
0.66 — -0.017 -0.014 —0.003 —0.009
0.78 — —-0.218 —0.238 -0.270 —0.107
0.94 — 0.445 0.423 0.404 0.312
1.28 — 0.047 0.047 0.035 0.013
1.34 — 0.291 0.293 0.291 0.149
1.40 — —0.044 —0.021 0.027 —0.054
1.60 — —0.001 0.004 —0.050 0.049
1.80 — 0.001 —0.004 0.022 -0.019
2.00 — 0.002 0.003 —0.008 0.005

T T T T T T T T is obviously more accurate than truncation. It is also seen that the
mistake in Ref. 1 is substantial.

Conclusions

The small example presented illustrates the important aspects of
this Note. First, it shows the magnitude of the differences between
Refs. 1 and 2, which was the primary purpose of this Note. Then,
it shows the excellent accuracy of a modal solution using a limited
number of modes if the higher modes are accounted for by residu-
alization. Finally, it shows the limited accuracy of a modal solution

first modal acceleration (g)

0.2 0.4 0.6 0.8

time (sec)

Fig. 2 First flexible modal acceleration response.

in which the higher modes are simply truncated.

It is somewhat surprising that the formulation of Ref. 1 is incor-
rect (especially to its authors). It was derived using the standard
approach of linear partial differential equations, which states that
a general response is a superposition of a forced solution plus a
homogeneous solution that damps out at large time. That approach
apparently was not applied correctly as evidenced by the necessary
incremental terms in Eq. (18). It has been suggested (Dusto, A. R.,
private communication with W. P. Rodden, Nov. 1996.) that the
formulation of Ref. 1 includes the effects of flexibility twice; that
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must be the case because both Egs. (7) and (18) provide the same
solution.
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Numerical Analysis of a Finite Wing
Altered by a Leading-Edge
Ice Accretion
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Rutgers University, Piscataway, New Jersey 08854-8058

Introduction

HE disastrous effects of ice accumulation on aircraft are well

known. However, for preventative measures to be designed
and implemented, the problem must somehow be quantified and
various deicing techniques tested. Numerical simulations provide
us with a relatively inexpensive way of gathering information on
the performancedegradationand flowfield characteristicsassociated
with various airfoil/ice accretion shape combinations. Furthermore,
they also offer the means by which the effectiveness of deicing
methods can be ascertained.

Althoughresearchrelatingto aircrafticing dates back to the 1920s
and early 1930s, most modern data have been acquired under a
NASA initiative of concurrent experimental and computational re-
searchthatbeganin 1978. Specifically, with regard to aircraft perfor-
mance and flowfield evaluation, the most significant experimental
work conducted under this program has been due to Bragg. Begin-
ning his investigationsin the early 1980s, Bragghas made use of two
distinct shapes known as rime and glaze ice. The former develop
at low temperatures and are aerodynamically shaped. Hence, the
main consequenceof their presenceis increased drag due to surface
roughness and early boundary-layer transition. On the other hand,
glaze accretions, which form at temperatures at or near freezing,
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are highly irregular and significantly effect the aerodynamicsof the
flow causing premature stall and excessivedrag. Bragg’s work spans
two decades and includes data on both iced airfoils and iced wings.
(see Bragg and Coirier,' Bragg and Khodadoust? and Khodadoust
and Bragg®). Itis highly regarded and often used to validate various
flow solvers.

Numerical studies have also been performed in the hope that one
day highly detailed, reliable information will be available quickly,
promoting a thorough analysis of the icing problem and the sub-
sequent development of effective deicing systems. Along this vein
there have been two major players to date. The first is Cebeci who
used an interactive boundary layer method to evaluate performance
losses of a NACA-0012 airfoil with a simulated leading-edge ice
shape.* Comparison of his results with experimental data indicate
good agreementof global propertiesup to stall. Second, Potapczuk,
using the thin-layer Navier-Stokes solver ARC2D, predicted aero-
dynamiclossesbeyond stall for the same ice shape and obtained data
suggesting that the flow is unsteady with periodic vortex shedding
at angles of attack above 7 deg.

Additionally, Kwon and Sankar®’ have used a three-dimensional
Navier-Stokes code in an effort to analyze an entire wing with
leading-edge ice accretion at two different angles of attack.
Although the resolutionin the boundary layer was quite coarse, the
predicted coefficients of lift and pressure were in good agreement
with experimental data for an angle of attack of 4 deg. At 8§ deg,
however, results were poor and prompted further examination. It
was then found that modeling of the splitter plate used in the wind
tunnel improved results to the point of qualitative agreement.

The present study is a comprehensive effort involving the devel-
opment and validation of a finite difference-based Navier-Stokes
solver and its subsequentuse to explore thoroughly the problem of
performance degradation due to leading-edge ice accretion. It is a
complete study® encompassing analysis of both two-dimensional
and three-dimensional configurations with the same code. Compu-
tations are performed within a three-dimensional parametric space
and account for compressibility and variations in Reynolds num-
ber. Furthermore, the solver developedis extremely robust. Results
obtained from the simulations agree with all previously established
experimental and numerical data. Additionally, grid convergence,
grid sensitivity, and iteration convergence have been explored guar-
anteeing that the results obtained are valid and can be reproduced
on any appropriate mesh.

In this Note, the results of a specific numerical analysis performed
to ascertain the aerodynamics of a wing altered by a leading-edge
glazeiceaccretionare presented. The wing, made up of NACA-0012
sections, is untwisted and untapered and has an aspectratio of five.
The ice shape employed was the simulated shape used in Refs. 2
and 3, hence facilitatinga one-to-onecomparison with experimental
data and previous computational results.

Computational Methodology

Governing Equations

The governingequationsare the complete unsteady, three-dimen-
sional Reynold’s-averaged Navier-Stokes equations. To simplify
application of the boundary conditions and enhance the overall ac-
curacy of the numerical solution a body-fitted or curvilinear coor-
dinate transformation’ has been applied to the governing equations.
The necessary metrics associated with this approach are computed
from the grid using central differences for the interior nodes and
second-order one-sided differences at the boundaries.

A two-layer algebraic turbulence model'® was employed for this
research with the eddy viscosity given as

vr =12, |wl, l =xy[l —exp(—y*/A)]

la = Cl 65 lmix = min(li 5 la) (1)
The constants k and A+ are the von Karman constant and the van
Driest damping coefficient and are taken as 0.41 and 26, respec-
tively. The closure coefficient C| is set to 0.089, |w]| is the magni-
tude of the vorticity vector,and y* is defined as y(|z, |/ p, )%/ v, .



