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Fig. 2 Comparison between inverse simulation results generated by
Genisa/Hibrom I and II (hurdle hop: Vf = 40 kn, h = 5 m, s = 150 m);
time step: two turns of main rotor. ——, Genisa/Hibrom II, and – – –,
Genisa/Hibrom I.

behavior is that a minimum interval corresponding to two turns of
the main rotor is required to allow the transient engine dynamics to
settle down toward a new steady state following each application
of the controls. The time constant associated with a � rst-order ap-
proximation to the engine governor model is typically 0.397 s. This
is more than double the time interval of 0.1755 s that corresponds
to one full turn of the main rotor. This explanation can be veri� ed
by reducing the engine model time constants s e1, s e2 , and s e3 to 1%
of their nominal values. The results improve, and a control applica-
tion interval of once per revolution produces smooth control time
histories and engine states.

V. Conclusions
An engine governor model has been successfully incorporated

into the individual blade rotor model Hibrom for helicopter inverse
simulation.Hence, the rotorspeedis now a degreeof freedomwithin
the modeled system.

A series of modi� cations have been made to the solution algo-
rithm Genisa to accommodate the variation in rotorspeed. In partic-
ular, the control application interval is now recalculated iteratively
at each time step. This is necessary to match the rotor periodicity
that is inherent in the individual blade rotor model. In addition, the
control application interval must be suf� ciently long to allow the
transient dynamics to settle; otherwise algorithm failure can occur.

The additionof the rotorspeeddegree of freedom does not signif-
icantly affect the predicted control time histories for the maneuver
consideredin this study.However, as the boundariesof the � ight en-
velope are approached, it may be expected that the enhanced rotor
model will be closer to predicting actual � ight behavior. Further-
more, with the introduction of the rotorspeed degree of freedom,
it will now be possible to improve simulation � delity by including
other blade degrees of freedom.
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Introduction

T HE quasistaticaeroelastic equationsof motion of a � ight vehi-
cle include all of the static effects of � exibilityand assume that

there are no structural dynamic effects, i.e., the vehicle is regarded
a point vehicle with six degrees of freedom. Thus, all points of the
structure are in phase with the motions of a reference point, e.g.,
the center of gravity or the quarter point of the mean aerodynamic
referencechord. The dynamic effects of structural modes cannot be
included simply by adding the modal equationsof motion to couple
with the quasistatic equations, as has been incorrectly suggestedby
Rodden and Love.1 The correct formulation begins with the mean
axis equations of motion to which the modal dynamic equations
are added with all appropriate aeroelastic coupling.2 Many modes
must be included to account accurately for static aeroelastic behav-
ior, but because not all of these are necessary to account for the
dynamic response, the high-frequencymodes can be eliminated by
residualization.3

Residualization of the Aeroelastic
Equations of Motion

The fundamentalequationofmotionof a linearaeroelasticsystem
in generalized (modal) coordinates is given in Eq. (1). The system
free vibration mode shapes are the generalized coordinates q and
the control surface inputs are generalized coordinates qc .

Mq̈ + C Çq + Kq = q̄Q0(M ) + ¡ 1[q̄Q(M , k)q] ¡ Mc q̈c

+ ¡ 1[q̄Qc(M , k)qc] + W (1)

The generalizedstructuralmass, damping,and stiffnessmatricesare
M, C, and K, respectively;W is a vector of weight and static unbal-
ance componentsadjusted for the trim pitch angle of the mean axes.
The coupled control surface generalized structural mass matrix is
Mc , and the control surfacestiffnessand dampingareneglected.The
generalizedaerodynamiccoef� cientsQ0(M ) are interceptvalues for
incidence, twist, and camber and are functionsof the Mach number
M . The generalizedunsteadyaerodynamiccoef� cientsQ(M, k) and
the coupled control surface generalized unsteady aerodynamic co-
ef� cients Qc(M, k) in the frequency domain are functions of Mach
number and reduced frequency k, where k = x c̄/ 2V in which x is
the angular frequency, c̄ is the reference chord, and V is the � ight
velocity. The aerodynamic force is scaled by dynamic pressure q̄,
where q̄ = q V 2 / 2 in which q is the atmosphericdensity. ¡ 1[ ] rep-
resents the inverseFourier transformof the quantity in brackets.The
generalizedunsteadyaerodynamiccoef� cients are complex and can
be separated into their real and imaginary parts to obtain an approx-
imation in the time domain as

¡ 1[q̄Q(M , k)q] = ¡ 1{q̄[R Q(M , k)]q

+ q̄(c̄ /2V )[I Q(M , k) / k]i x q} ¼ q̄Aq + q̄(c̄ /2V )B Çq (2)

The coef� cients are obtained from an unsteady aerodynamic theory
such as the doublet-latticemethod,4,5 where A is the real part of the
generalizedaerodynamicforce (GAF) matrixand B is the imaginary
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part of the GAF matrix divided by k for a selected Mach number
and reduced frequency.Likewise, for the control surfaces

¡ 1[q̄Qc(M , k)qc] = ¡ 1{q̄[RQc(M , k)]qc

+ q̄(c̄/2V )[I Qc(M , k) / k]i x qc} ¼ q̄Acqc + q̄(c̄/ 2V )Bc Çqc

(3)

This approximationmakes the GAFs invariantwith frequency.For a
quasistaticaerodynamicassumptionthese coef� cients are evaluated
at a low value of k such as 0.001. With these assumptionsEqs. (1–3)
can be combinedto give Eq. (4), where the aerodynamiccoef� cients
are shown as constants.

Mq̈ + C Çq + Kq = q̄Q0 + q̄Aq + q̄(c̄/2V )B Çq ¡ Mc q̈c

+ q̄Acqc + q̄(c̄/ 2V )Bc Çqc + W (4)

If the generalized coordinates are partitioned into those for rigid
body modes (R), the � exible dynamic modes (D), and the � exible
static modes (S), then Eq. (4) can be rewritten as Eq. (5).
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This equationdescribestheentireaeroelasticsystemand can include
a largenumberof the freevibrationmodesof the system.The � exible
modes are partitioned into groups called “dynamic” and “static” for
convenience in the following development. The “dynamic” modes
are those modes whose dynamic effect is kept in subsequent anal-
yses. The “static” modes are those higher frequency modes whose
dynamic effect is neglectedbut whose static effect is kept in the sub-
sequent analyses. The dimensional characteristicsof the rigid body
partitionsAR and BR can be illustrated in the longitudinalcase with
plunging and pitching degrees of freedom (DOF)
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where S is the referencearea and customarynotation is used for the
stability derivatives.

To reducethe sizeof theproblem,the staticmodesare residualized
by retaining their de� ections but eliminating their velocities and
accelerations.3 This is accomplishedby setting ÇqS = q̈S =0 in Eq. (5)
and solving for the � exible static modal de� ections qS , which are

qS = q̄(KS ¡ q̄AS ) ¡ 1[ASR
... ASD]

(
qR
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qD

)

+ q̄(c̄ /2V )(KS ¡ q̄AS) ¡ 1[BSR
... BSD]

(
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ÇqD

)

¡ (KS ¡ q̄AS ) ¡ 1Mc
S q̈c + q̄(KS ¡ q̄AS ) ¡ 1Ac

Sqc

+ q̄(c̄ /2V )(KS ¡ q̄AS) ¡ 1Bc
S Çqc (6)

Eliminating qS from Eq. (5) gives
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Āc

D

3

5{qc} + q̄

³
c̄

2V

´2

4
B̄c

R

¢ ¢ ¢
B̄c

D

3

5{ Çqc} +

(
W
¢ ¢
0

)
(7)

Generic forms for the various barred partitions in the preceding
equation can be written as follows. For the singly subscripted parti-
tions of A or B,

P̄l = Pl + q̄AlS (KS ¡ q̄AS) ¡ 1PSl (8)

and for the doubly subscripted partitions

P̄mn = Pmn + q̄Am S(KS ¡ q̄AS ) ¡ 1PSn (9)

where P denotes A or B, l and m denote R or D, and n denotes D
or R. For the control system partitions the generic form is singly
subscripted as

P̄c
l = Pc

l + q̄AlS (KS ¡ q̄AS) ¡ 1Pc
S (10)

where Pc denotes Mc, Ac, or Bc and l denotes R or D.
The quasistatic aeroelastic (QSAE) solution is obtained by keep-

ing just the de� ections of the dynamic modes and eliminating
their velocities and accelerations. This is accomplished by setting
ÇqD = q̈D =0 in Eq. (7) and is equivalent to residualizing all of the
� exible modes, both static and dynamic. In this case

qD = q̄(KD ¡ q̄ĀD) ¡ 1ĀDRqR + q̄(c̄/2V )(KD ¡ q̄ĀD) ¡ 1B̄DR ÇqR

¡ (KD ¡ q̄ĀD) ¡ 1M̄c
D q̈c + q̄(KD ¡ q̄ĀD) ¡ 1Āc

Dqc

+ q̄(c̄ /2V )(KD ¡ q̄ĀD) ¡ 1B̄c
D Çqc (11)

and Eq. (7) reduces to

MR q̈R = q̄Q0 + q̄ ¯̄ARqR + q̄(c̄ /2V ) ¯̄BR ÇqR ¡ ¯̄Mc
R q̈c

+ q̄ ¯̄Ac
R qc + q̄(c̄/ 2V ) ¯̄Bc

R Çqc + W (12)
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with the generic expressionsfor the doubly barred partitionswritten
as

¯̄PR = P̄R + q̄ĀRD(KD ¡ q̄ĀD) ¡ 1P̄DR (13)

where P̄R denotes ĀR or B̄R and P̄DR denotes ĀDR or B̄DR. The
control system terms are

¯̄Pc
R = P̄c

R + q̄ĀRD(KD ¡ q̄ĀD) ¡ 1P̄c
D (14)

where P̄c
R denotes M̄c

R , Āc
R , or B̄c

R and P̄c
D denotes M̄c

D , Āc
D , or B̄c

D .
The partitions AR and BR in Eq. (5) are the aerodynamic coef� -

cients for a rigid vehicle. The partitions ĀR and B̄R in Eq. (7) are
the mean axis DOF aerodynamiccoef� cients for a vehicle with the
static modes residualized but not the dynamic modes. The matri-
ces ¯̄AR and ¯̄BR in Eq. (12) are the mean axis DOF aerodynamic
coef� cients for a QSAE vehicle with no dynamic structural modes
included, i.e., all modes are regarded as static. The important point
to note is that AR 6=ĀR 6= ¯̄AR and BR 6=B̄R 6= ¯̄BR .

The equation of motion described by Eq. (5) representsa � exible
vehiclewith all of its modes consideredas dynamic.The equationof
motion described by Eq. (7) represents a � exible vehicle with some
but not all of its structural dynamic effects included. The equation
of motion described by Eq. (12) represents a � exible vehicle with
none of its structural dynamic effects included. This correspondsto
a QSAE vehicle where all of the static � exible effects are included,
but none of the dynamic � exible effects are included. This is the
formulation that leads to unrestrained aeroelastic derivatives such
as those obtainedfromFLEXSTAB6 or MSC/NASTRAN, SOL 144
(Ref. 7). Solving for the dynamic stability (the eigenvalueproblem)
of each of Eqs. (5), (7), and (12) results in differentmean body DOF
roots, e.g., the short period root in the longitudinal case.

Let us compare Eqs. (7) and (12) and de� ne generic increments
in Eqs. (13) and (14) as

¯̄PR = P̄R ¡ D ¯̄PR (15)

where P̄R denotes ĀR , B̄R , M̄c
R , Āc

R or B̄c
R and

D ¯̄PR = ¡ q̄ĀRD(KD ¡ q̄ĀD) ¡ 1P̄DR (16)

where P̄DR denotes ĀDR or B̄DR, or

D ¯̄PR = ¡ q̄ĀRD(KD ¡ q̄ĀD) ¡ 1P̄D (17)

in which P̄D =M̄c
D Āc

D , or B̄c
D . We may rewrite Eq. (7)usingEq. (15)
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Equation (18) is the formulation of Rodden and Love1 if the in-
crements D ¯̄AR , D ¯̄BR , D ¯̄Mc

R , D ¯̄Ac
R , and D ¯̄Bc

R are set to zero. The
mistake is seen in their omission.Both Eqs. (7) and (18) are correct;
which is preferable depends on the analyst.

Example of a Forward-Swept Wing Airplane
A forward-swept wing airplane has been consideredas an exam-

ple in Refs. 1 and 7 and is reconsideredhere. In Ref. 1 strip theory
aerodynamics were used, and in Ref. 7 the doublet-lattice method
was used.The planformwith its structural,inertial,andaerodynamic
idealizations is shown in Fig. 1. The structural model is shown on
the right side with the grid points (GP) numbered; the doublet-lattice
aerodynamic model is shown on the left side with 8 boxes on the
left canard and 32 boxes on the left wing, and body interference is
neglected. The airplane has a gross weight of 16,000 lb. Its wing
span is 40 ft, its canardspan is 10 ft, and both surfaceshavechordsof
10 ft. The structuraldamping is assumed at two percent.The canard
mass and aerodynamic damping are neglected, and the intercept
coef� cients are assumed to be zero. The remaining characteristics
are discussed in the references. This simple model has only six vi-
bration modes for out-of-plane motion; their frequencies are 9.89,
18.40, 43.22, 56.77, 71.03, and 138.35 Hz. The example maneu-
ver assumes a dynamic pressure of 1200 psf, which corresponds
to a speed of 1005 ft/s and a Mach number of 0.90 at sea level.
The airplane is in trimmed level � ight for 0.10 s with an angle of
attack of 0.178 deg and canard position of 1.007 deg. Then a pull-
up is initiated, and the control input rotates the canard at 50 deg/s
to 4.007 deg at 0.16 s. At 0.66 s a push-over is begun, and the ca-
nard position reaches -1.993 deg at 0.78 s. At 1.28 s the control is
reversed and returns to the trim position at 1.34 s.

Tables 1, 2, and 3 present calculated mean axis load factor at
GP 90, mean axis pitch acceleration,and � rst � exible modal accel-
eration, respectively,at selected values of time. The second column
presents the accelerations of the QSAE vehicle, i.e., the solution
of Eq. (12) where all six modes have been residualized. The third
column shows the correct solution based on Ref. 2 with the six dy-
namic modes retained [equivalent to Eq. (5) with no static modes],
the fourth column shows the correct solution with one dynamic
mode and � ve residualized modes, and the � fth column shows the
correct solution with one dynamic mode retainedand the remaining
modes truncated. The differences between the QSAE solution and
the dynamic modal solutions result from the abrupt changes in the
canard motion; more gradual changeswould not excite the structure
as much. Finally, the sixth column shows the incorrect solution of
Ref. 1 with all six dynamic modes retained [equivalent to Eq. (18)
with the delta increments set to zero].

The time histories of the QSAE vehicle have been plotted in
Fig. 4 of Ref. 1. The various solutions in Tables 1 and 2 are slightly
different, but they are not shown here. The new result for the � rst
� exible mode, not obtained in Ref. 1 and shown in Table 3, is also
plotted in Fig. 2 for the case of all six � exible modes retained in the
analysis.

In this example, it is seen that only one dynamic mode is required
to achieve convergencebecause of the wide separation between the
� rst and second modal frequencies, and that modal residualization

Fig. 1 Idealization of forward-swept wing airplane.
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Table 1 Mean axis load factor at GP 90 ( g)

Correct solution Correct solution Incorrect
Correct solution2 Eq. (7)—1 mode Eq. (7)—1 mode solution1

t , s QSAE 6 modes 5 modes residualized no residual modes 6 modes

0.10 1.000 1.000 1.000 1.000 1.000
0.16 2.089 1.946 1.961 1.897 2.240
0.34 4.413 4.462 4.465 4.515 4.186
0.66 3.764 3.799 3.798 3.778 3.749
0.78 0.768 0.870 0.848 1.016 0.299
0.94 ¡ 2.931 ¡ 2.952 ¡ 2.964 ¡ 3.055 ¡ 2.437
1.28 ¡ 1.836 ¡ 1.891 ¡ 1.890 ¡ 1.848 ¡ 1.773
1.34 ¡ 0.841 ¡ 0.989 ¡ 0.974 ¡ 1.067 ¡ 0.462
1.40 0.116 0.180 0.186 0.051 0.481
1.60 1.335 1.269 1.270 1.381 0.991
1.80 0.874 0.918 0.916 0.853 1.050
2.00 1.048 1.023 1.024 1.056 0.978

Table 2 Mean axis pitch acceleration (deg/s2)

Correct solution Correct solution Incorrect
Correct solution2 Eq. (7)—1 mode Eq. (7)—1 mode solution1

t , s QSAE 6 modes 5 modes residualized no residual modes 6 modes

0.10 0.0 0.0 0.0 0.0 0.0
0.16 115.3 116.9 116.6 122.1 96.3
0.34 ¡ 45.5 ¡ 48.3 ¡ 48.2 ¡ 50.0 ¡ 33.5
0.66 ¡ 0.3 ¡ 3.3 ¡ 3.0 0.1 ¡ 4.2
0.78 ¡ 162.8 ¡ 159.0 ¡ 158.9 ¡ 169.9 ¡ 126.9
0.94 81.8 82.6 82.8 88.7 50.7
1.28 6.0 10.1 9.9 5.8 5.4
1.34 126.0 127.3 126.9 133.2 96.2
1.40 48.9 41.6 41.9 49.4 29.4
1.60 ¡ 18.8 ¡ 11.9 ¡ 12.4 ¡ 20.2 3.9
1.80 7.2 3.1 3.3 8.0 ¡ 4.1
2.00 ¡ 2.7 ¡ 0.7 ¡ 0.8 ¡ 3.1 1.5

Table 3 First � exible modal acceleration ( g)

Correct solution Correct solution Incorrect
Correct solution2 Eq. (7)—1 mode Eq. (7)—1 mode solution1

t , s QSAE 6 modes 5 modes residualized no residual modes 6 modes

0.10 — 0.000 0.000 0.000 0.000
0.16 — 0.255 0.253 0.247 0.157
0.34 — ¡ 0.301 ¡ 0.313 ¡ 0.277 ¡ 0.237
0.66 — ¡ 0.017 ¡ 0.014 ¡ 0.003 ¡ 0.009
0.78 — ¡ 0.218 ¡ 0.238 ¡ 0.270 ¡ 0.107
0.94 — 0.445 0.423 0.404 0.312
1.28 — 0.047 0.047 0.035 0.013
1.34 — 0.291 0.293 0.291 0.149
1.40 — ¡ 0.044 ¡ 0.021 0.027 ¡ 0.054
1.60 — ¡ 0.001 0.004 ¡ 0.050 0.049
1.80 — 0.001 ¡ 0.004 0.022 ¡ 0.019
2.00 — 0.002 0.003 ¡ 0.008 0.005

Fig. 2 First � exible modal acceleration response.

is obviously more accurate than truncation. It is also seen that the
mistake in Ref. 1 is substantial.

Conclusions
The small example presented illustrates the important aspects of

this Note. First, it shows the magnitude of the differences between
Refs. 1 and 2, which was the primary purpose of this Note. Then,
it shows the excellent accuracy of a modal solution using a limited
number of modes if the higher modes are accounted for by residu-
alization. Finally, it shows the limited accuracy of a modal solution
in which the higher modes are simply truncated.

It is somewhat surprising that the formulation of Ref. 1 is incor-
rect (especially to its authors). It was derived using the standard
approach of linear partial differential equations, which states that
a general response is a superposition of a forced solution plus a
homogeneous solution that damps out at large time. That approach
apparently was not applied correctly as evidencedby the necessary
incremental terms in Eq. (18). It has been suggested (Dusto, A. R.,
private communication with W. P. Rodden, Nov. 1996.) that the
formulation of Ref. 1 includes the effects of � exibility twice; that
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must be the case because both Eqs. (7) and (18) provide the same
solution.
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Numerical Analysis of a Finite Wing
Altered by a Leading-Edge

Ice Accretion

Gregory J. Falabella¤ and David G. Briggs†

Rutgers University, Piscataway, New Jersey 08854-8058

Introduction

T HE disastrous effects of ice accumulation on aircraft are well
known. However, for preventative measures to be designed

and implemented, the problem must somehow be quanti� ed and
various deicing techniques tested. Numerical simulations provide
us with a relatively inexpensive way of gathering information on
theperformancedegradationand� ow� eldcharacteristicsassociated
with various airfoil/ice accretionshape combinations.Furthermore,
they also offer the means by which the effectiveness of deicing
methods can be ascertained.

Althoughresearchrelatingto aircrafticingdatesbackto the1920s
and early 1930s, most modern data have been acquired under a
NASA initiative of concurrent experimental and computational re-
search that began in 1978.Speci� cally,with regard to aircraftperfor-
mance and � ow� eld evaluation, the most signi� cant experimental
work conducted under this program has been due to Bragg. Begin-
ning his investigationsin theearly1980s,Bragghasmade use of two
distinct shapes known as rime and glaze ice. The former develop
at low temperatures and are aerodynamically shaped. Hence, the
main consequenceof their presence is increaseddrag due to surface
roughness and early boundary-layer transition. On the other hand,
glaze accretions, which form at temperatures at or near freezing,
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are highly irregular and signi� cantly effect the aerodynamicsof the
� ow causingprematurestall and excessivedrag.Bragg’s work spans
two decades and includes data on both iced airfoils and iced wings.
(see Bragg and Coirier,1 Bragg and Khodadoust,2 and Khodadoust
and Bragg3 ). It is highly regardedand often used to validatevarious
� ow solvers.

Numerical studies have also been performed in the hope that one
day highly detailed, reliable information will be available quickly,
promoting a thorough analysis of the icing problem and the sub-
sequent development of effective deicing systems. Along this vein
there have been two major players to date. The � rst is Cebeci who
used an interactiveboundary layer method to evaluate performance
losses of a NACA-0012 airfoil with a simulated leading-edge ice
shape.4 Comparison of his results with experimental data indicate
goodagreementof globalpropertiesup to stall.Second,Potapczuk,5

using the thin-layer Navier–Stokes solver ARC2D, predicted aero-
dynamic lossesbeyondstall for the same ice shapeandobtaineddata
suggesting that the � ow is unsteady with periodic vortex shedding
at angles of attack above 7 deg.

Additionally,Kwon and Sankar6,7 have used a three-dimensional
Navier–Stokes code in an effort to analyze an entire wing with
leading-edge ice accretion at two different angles of attack.
Although the resolution in the boundary layer was quite coarse, the
predicted coef� cients of lift and pressure were in good agreement
with experimental data for an angle of attack of 4 deg. At 8 deg,
however, results were poor and prompted further examination. It
was then found that modeling of the splitter plate used in the wind
tunnel improved results to the point of qualitative agreement.

The present study is a comprehensive effort involving the devel-
opment and validation of a � nite difference-based Navier–Stokes
solver and its subsequent use to explore thoroughly the problem of
performance degradation due to leading-edge ice accretion. It is a
complete study8 encompassing analysis of both two-dimensional
and three-dimensionalcon� gurations with the same code. Compu-
tations are performed within a three-dimensional parametric space
and account for compressibility and variations in Reynolds num-
ber. Furthermore, the solver developed is extremely robust. Results
obtained from the simulations agree with all previouslyestablished
experimental and numerical data. Additionally, grid convergence,
grid sensitivity,and iterationconvergencehave been exploredguar-
anteeing that the results obtained are valid and can be reproduced
on any appropriate mesh.

In this Note, the resultsof a speci� c numericalanalysisperformed
to ascertain the aerodynamics of a wing altered by a leading-edge
glaze ice accretionarepresented.The wing,madeupofNACA-0012
sections, is untwisted and untapered and has an aspect ratio of � ve.
The ice shape employed was the simulated shape used in Refs. 2
and 3, hence facilitatinga one-to-onecomparisonwith experimental
data and previous computational results.

Computational Methodology
Governing Equations

The governingequationsare the completeunsteady,three-dimen-
sional Reynold’s-averaged Navier–Stokes equations. To simplify
application of the boundary conditions and enhance the overall ac-
curacy of the numerical solution a body-� tted or curvilinear coor-
dinate transformation9 has been applied to the governingequations.
The necessary metrics associated with this approach are computed
from the grid using central differences for the interior nodes and
second-orderone-sided differencesat the boundaries.

A two-layer algebraic turbulencemodel10 was employed for this
research with the eddy viscosity given as

m T = l2
mix j ! j , li = j y[1 ¡ exp( ¡ y + / A)]

lo = C1 d , lmix = min(li , lo) (1)

The constants j and A+ are the von Kármán constant and the van
Driest damping coef� cient and are taken as 0.41 and 26, respec-
tively. The closure coef� cient C1 is set to 0.089, j ! j is the magni-
tude of the vorticity vector, and y + is de� ned as y( j s w j / q w )1/2 / m w .


